Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38254954

RESUMEN

Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.


Asunto(s)
Lacticaseibacillus paracasei , Rotíferos , Animales , Genómica , Rotíferos/genética , Antibacterianos , Acuicultura , Péptidos
2.
Pathogens ; 12(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38133330

RESUMEN

The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors.

3.
Front Immunol ; 14: 1178462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153602

RESUMEN

Lactic Acid Bacteria (LAB) are a group of bacteria frequently proposed as probiotics in aquaculture, as their administration has shown to confer positive effects on the growth, survival rate to pathogens and immunological status of the fish. In this respect, the production of antimicrobial peptides (referred to as bacteriocins) by LAB is a common trait thoroughly documented, being regarded as a key probiotic antimicrobial strategy. Although some studies have pointed to the direct immunomodulatory effects of these bacteriocins in mammals, this has been largely unexplored in fish. To this aim, in the current study, we have investigated the immunomodulatory effects of bacteriocins, by comparing the effects of a wild type nisin Z-expressing Lactococcus cremoris strain of aquatic origin to those exerted by a non-bacteriocinogenic isogenic mutant and a recombinant nisin Z, garvicin A and Q-producer multi-bacteriocinogenic strain. The transcriptional response elicited by the different strains in the rainbow trout intestinal epithelial cell line (RTgutGC) and in splenic leukocytes showed significant differences. Yet the adherence capacity to RTgutGC was similar for all strains. In splenocyte cultures, we also determined the effects of the different strains on the proliferation and survival of IgM+ B cells. Finally, while the different LAB elicited respiratory burst activity similarly, the bacteriocinogenic strains showed an increased ability to induce the production of nitric oxide (NO). The results obtained reveal a superior capacity of the bacteriocinogenic strains to modulate different immune functions, pointing to a direct immunomodulatory role of the bacteriocins, mainly nisin Z.


Asunto(s)
Bacteriocinas , Lactobacillales , Lactococcus lactis , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Bacteriocinas/farmacología , Mamíferos
4.
Foods ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900581

RESUMEN

Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.

5.
Microorganisms ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35336097

RESUMEN

Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture.

6.
Microbiol Resour Announc ; 10(49): e0079221, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34881980

RESUMEN

Weissella cibaria P71 is a lactic acid bacterium that was isolated from common octopus (Octopus vulgaris) and previously showed interesting probiotic properties for turbot (Scophthalmus maximus L.) farming. The draft genome sequence of this strain provides further data to support its potential as a probiotic for aquaculture.

7.
Foods ; 10(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34574202

RESUMEN

Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.

8.
Microorganisms ; 9(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668916

RESUMEN

The emergence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) antimicrobial resistance and epidemic genetic lineages is posing a challenge in veterinary medicine due to the limited therapeutical options. MRSP has been identified as an important canine pyoderma pathogen. Thus, we aimed to characterize the antimicrobial resistance and clonal lineages of MRSP isolated from canine cutaneous pyoderma. Thirty-one MRSP isolates recovered from pyoderma were further characterized. The antimicrobial susceptibility testing of the isolates was performed by the Kirby-Bauer disc diffusion method against 14 antimicrobial agents. The presence of antimicrobial and virulence genes was carried out by PCR. Multilocus sequence typing was performed in all isolates. All strains had a multidrug-resistant profile showing resistance mainly to penicillin, macrolides and lincosamides, aminoglycosides, tetracycline and trimethoprim-sulfamethoxazole, which was encoded by the blaZ, ermB, msr(A/B), aac(6')-Ie-aph(2'')-Ia, aph(3')-IIIa, ant(4')-Ia, tetM, tetK and dfrG genes. All isolates harbored the lukS-I/lukF-I virulence factors. Isolates were ascribed to nine previously described sequence types (STs): ST123, ST339, ST727, ST71, ST537, ST45, ST1029, ST118 and ST1468; and to five STs first described in this study: ST2024, ST2025, ST2026, ST2027 and ST2028. In this study, most isolates belonged to ST123 (n = 16), which belongs to CC71 and is the most common clone in Europe. All isolates were multidrug-resistant, which may impose a serious threat to animal health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...